
Scientific Visualization, 2024, volume 16, number 1, pages 38 - 51, DOI: 10.26583/sv.16.1.04

Building Depth Maps Using an Active-Pulse Television Meas-

uring System in Real Time Domain

I.D. Musikhin1 , V.V. Kapustin2 , A.A. Tislenko3 , A. Movchan4 , S.A. Zabuga5

Tomsk State University of Control Systems and Radioelectronics

1 ORCID: 0009-0001-7776-1698, musihin.i@tu.tusur.ru

2 ORCID: 0000-0002-2293-0511, vk@tu.tusur.ru
3 ORCID: 0009-0009-8082-6753, tislenko_1999-2012@mail.ru

4 ORCID: 0000-0002-0020-6354, ltaak@tu.tusur.ru
5 ORCID: 0009-0004-2402-2885, sergeizabuga@gmail.com

Abstract

The paper presents the results of software development for building depth maps based on
video data from a television camera of an active-pulse television measuring system (AP TMS)
in real time domain. The development of such software is required to conduct various scien-
tific studies, as well as to improve the methods and techniques for building depth maps and
remote measurement of the characteristics of objects of interest. The software was imple-
mented using the Python programming language with additional libraries installed. Accord-
ing to the results of testing the implemented algorithm, it was found that the calculation
speed using the graphics processing unit (GPU) is on average 3.5 times higher than the speed
of the algorithm using only the central processing unit (CPU). It has been established that
with the help of CUDA cores it is possible to build depth maps in real time domain at the
maximum possible resolution of video frames of the system (1544x2064 pixels), while when
using the central processor, real-time operation is possible only at a reduced resolution of
video frames (772x1032 pixels).

Keywords: Depth maps, active-pulse television measurement system, image processing,

CPU, CUDA cores, GPU, performance.

1. Introduction
In today's world, remote distance measuring is a very important and challenging task. This

problem arises in geodesy, in radar, in video analysis, in the design of various infrastructure
systems, unmanned vehicles, etc. There are many methods for distance measuring. Distance
measurement can be carried out directly by the operator, using the simplest methods, or with
the help of specialized devices, the operation principles of which are based on the optical laws
of physics. Active-pulse television measuring system (AP TMS) can also be attributed to such
devices.

A television system with a pulsed method of observing space and the possibility of measur-
ing any parameters of the observed objects is called an active-pulse television measuring sys-
tem.

This paper discusses the development of the software which is able to build depth maps
based on video data from an AP TMS television camera. The scientific novelty of this work is
in the development of new high-speed software for building depth maps both directly from
the AP TMS model in real time and from pre-recorded video material, which would provide a
high-level interface for various types of measurements. It should be noted that using AP TMS
it is possible to carry out distance measurements in adverse weather conditions (fog, snow-

https://doi.org/10.26583/sv.16.1.04
mailto:musihin.i@tu.tusur.ru
mailto:vk@tu.tusur.ru
mailto:tislenko_1999-2012@mail.ru
mailto:ltaak@tu.tusur.ru
mailto:sergeizabuga@gmail.com

fall, rain and other meteorological phenomena), therefore, the development of such software
and its use in conjunction with AP TMS is an urgent task [1 –3].

The developed software is designed for use in conjunction with the AP TMS model, mainly
for research work in which it is necessary to measure distances to objects of interest under
conditions of normal and reduced transparency of the propagation medium of optical radia-
tion. Such an application could be the navigation of unmanned mobile robots, remote meas-
urement of distances and various parameters of observed objects. The software is designed
for a trained user familiar with the operating principles of AP TMS. Please note that the soft-
ware, after final testing, will be distributed with the prior consent of TUSUR management
and its developers.

The video sequence from the AP TMS television camera goes at a frequency of 50 frames
per second, it is required to divide each 2 frames, and substitute the result of the division into
a polynomial function to get the distance to the objects. It follows from this that the time tak-
en by the software to build a depth map should be no more than 40 ms with a 7th order poly-
nomial. Also, in order to obtain various kinds of scientific data, it is required to put various
functionalities into the software, for example, depth map pseudo-coloring, recording the in-
put video stream, setting up a polynomial function, etc.

Based on this, it can be noted that the development of such software is very important task,
that would allow to configure lots of various parameters of the AP TMS and would have ex-
tensive image processing capabilities.

A depth map is an image where for each pixel, instead of brightness, the distance from the
camera to the object is stored [4]. For a better visual perception of the distance, the possibility
of presenting the depth map in color was implemented. An example of a depth map is shown
below in Figure 1.

a b

Figure 1. Original frame (a) and the depth map (b) obtained using AP TMS

In Figure 1 b, the numbers on the shields are visible, but it is logical that they should not be

visible. This is due to the fact that the depth map is built based on the ratio of the intensity of
the reflected light. Due to the different reflectivity of surfaces, dark objects reflect less light,
this leads to the fact that the ratio (and therefore the distance) to a dark surface is calculated
with greater distortions than to a light one (fewer number of brightness quantization levels
for dark surfaces and, as a result, a larger error rounding, as well as greater influence of black
level in frames). This is another scientific problem that is currently being solved. Also, unreli-

able values in Figure 1 b were filtered by a threshold, which led to the zeroing of the values for
the area of boards containing numbers.

2. Active-pulse television measuring system

2.1. General information about AP TMS
The dependence of the energy value of the light flux reflected from a separate object during

one video frame obtained from the AP TMS photodetector is determined by the active vision
area (AVA) [5]. AVA is created by emitting a space illumination pulse (SIP) from the pulsed
laser semiconductor emitter (PLSE) and receiving the reflected light flux by a photodetector
during the open state of the shutter. The control pulse for opening the shutter of the photode-
tector is called the photodetector gating pulse (PGP).

The use of multi-area distance measuring methods (MADM) in AP TMS is based on the
formation of two groups of frames. An individual frame formed by an AP TMS television
camera during its exposure is the sum of a group of frames captured by the system [6].

Moreover, the first group is the sum of frames with local AVA, i.e. both the duration of the
SIP and PGP, and the duration of the gate delay remain constant. The second group of frames
is formed by summing frames containing such AVAs, whose location in space is changed by
changing the length of the shutter delay by some discrete step. The first group of frames is
exposed in the odd frame of the AP TMS television camera, and the second group of frames is
exposed in the even frame. Next, to obtain a linear dependence of brightness on range, it is
necessary to divide the even frame into an odd one.

2.2. Structure of AP TMS
The block diagram of the AP TMS is shown in Figure 2.

Figure 2. The block diagram of the AP TMS

The block diagram of AP TMS (Figure 2) can be divided into three modules: radiating

module, receiving module, control and processing module.
The emitting module consists of a pump current pulse generator, PLSE, and a lens. The

pump current pulse generator controls the PLSE to ensure the strength of the luminous flux
during a given radiation time. Light passes through the lens of the emitter, where it acquires
the necessary spatial angle to illuminate the space. The receiving module consists of an image
intensifier tube (IIT), in front of which there is an input lens that focuses the reflected optical
flow. The image intensifier tube in this system primarily acts as a fast shutter, and it also con-
verts the reverse light flux emitted in the frequency range invisible to the eye into visible light,

increasing its intensity. The light flux leaving the image intensifier tube is focused on the ma-
trix of the television camera due to the matching lens.

The TV camera is synchronized through the control unit with the image intensifier. The
frame frequency of the TV sensor is 50 Hz, the operating frequency of the image intensifier is
5 kHz. Thus, for 1 frame, up to 100 frames formed on the image intensifier screen can be in-
tegrated in the TV sensor.

The image control and processing module allows receiving a video stream from an AP TMS
television camera and perform the necessary processing of video frames to build depth maps.

2.3. Approximation of the measurement function
The use of polynomial approximation allows increasing the accuracy of building a depth

map relative to a linear approximation, thereby increasing the accuracy of measuring the dis-
tance to objects of interest using AP TMS.

Approximation is a scientific method that involves finding a simplified mathematical mod-
el that is as close as possible to the original mathematical model. When approximating, the
values at the points of the original function do not perfectly match the values at the corre-
sponding points of the approximating function. To apply this method, the criterion of root-
mean-square approximation (method of least squares) was chosen.

For AP TMS, linear and polynomial types of approximation were considered (in particular,
polynomial functions of the 3rd, 5th and 7th degrees).

To calculate the coefficients of the approximating functions in accordance with the root
mean square (RMS) approximation criterion, it is necessary to calculate the partial deriva-
tives with respect to the general form of each of the approximating functions. Obtaining ex-
pressions for partial derivatives will lead to a system of linear algebraic equations that can be
solved using the Cramer method.

The main parameter for assessing the proper approximation accuracy between approxi-
mating function and original function, presented in tabular form, was the root-mean-square
error (RMSE). According to [7], an experiment was conducted and the following results were
obtained (Table 1).
Table 1. RMS values based on the results of the approximation

Approximation
function

Linear
3rd degree poly-

nomial
5th degree poly-

nomial
7th degree poly-

nomial

RMSE, m 0.1568 0.0573 0.0180 0.0125

The best result in terms of approximation accuracy is achieved when using an approximat-
ing polynomial function of the 7th degree compared to others.

3. Software implementation of the algorithm for building
depth maps

3.1. Software implementation
The software was developed using the Python programming language [8] with the Py-

Charm IDE [9] using the libraries PyQt6, SciPy, SymPy, Ximea, Numba, NumPy, OpenCV,
glob, time, sys, os, math, psutil, pyqtgraph [10–23]. The interface created using the PyQt6 li-
brary is shown in Figure 3.

Figure 3. Interface of the developed program

The program interface contains such tabs as "Camera", "Polynomial", "Depth Map",

"View", "Recording", "Measurements" and "Video".
The program interface provides a "Camera" tab (Figure 4, a), where you can connect and

disconnect from the AP TMS television camera, adjust the image bit depth, resolution, and its
amplification.

In the “Polynomial” tab (Figure 4, b), the required type of approximation of the measuring
function is selected (from a linear function to a polynomial of the 7th degree), its coefficients
are adjusted.

The “Depth Map” tab (Figure 4, c) contains the settings for building a depth map. In this
tab, you can replace even and odd frames in places when calculating the depth map, filter the
depth map by range (both using its normalized values, and directly specifying the ranges in
meters). To increase the signal-to-noise ratio of frames, their accumulation and averaging is
implemented.

a b c
Figure 4. Camera (a), Polynomial (b), and Depth Map (c) tabs

In the "View" tab (Figure 5, a) display mode on the screen can be selected (even frame, odd

frame, depth map or colorized depth map). In the second field from the top, the type of color-
ing of the depth map can be selected, and the field following it allows you to select the type of

filtering of the depth map and set the size of the filter mask. So, for the convenience and ac-
celeration of the user's work, the possibility of saving all the program settings and resetting
them to the default values is available. For the convenience of perception of range as a color
on the colored depth map, it is possible to display a line of colors. An example of such line,
with reference to ranges, is shown in Figure 5, b.

a b c
Figure 5. "View" tab (a), Ruler example (b), and "Record" tab (c)

Region of interest (Figure 6) can be configured directly in the frame output window. Press-

ing the left mouse button, holding it down and moving the mouse creates and adjusts the size
of the region of interest.

Figure 6. Region of interest

On the “Recording” tab (Figure 5, c), the possibility of saving frames from the program, as

well as recording to a video file, is implemented. Also, in this tab, you can plot the amplitudes
(Figure 7) for all selected regions of interest (ROI), this is used for the scanning mode.

Figure 7. An example of a plot of frame ratio amplitudes plotted from ROI

Data from regions of interest are displayed in the interface (Figure 3) in the right part of

the window.
In the "Measurements" tab (Figure 8, a), a reference frame is created by averaging the in-

put frames. The number of frames in the average is configured in the field below. After the
reference frames are formed, you can turn on the “Measurement” mode, in this mode, for
each region of interest, the root-mean-square error (RMSE) and the peak signal-to-noise ra-
tio (PSNR) for an even frame, an odd frame, and a depth map are calculated. Mean squared
error (MSE), RMSE and PSNR are calculated according to the formulas below.

1 1
2

0 0

2

(,) (,)

10lg 20lg

m n

i j

I I

I i j K i j

MSE
mn

RMSE MSE

MAX MAX
PSNR

MSE RMSE

 

 







   
    

  



I and K – are two images of size m×n, one of which is considered a noisy approximation of

the other,
MAXI is the maximum value accepted by the image pixel. When pixels are 8 bits wide,

MAXI = 255.
In the “Video” tab (Figure 8, b), opening a video file in *.avi format is implemented, and all

the functionality described above can also work with a video file.

a b

Figure 8. "Measurements" (a) and "Video" (b) tabs

The task of the software described above was to complete in 40 ms: counted two video

frames, divided the even frame (contains the sum of frames from the 2nd group) into an odd
frame (contained the sum of frames from the 1st group), filtered by the range of the resulting
ratio, colored the resulting depth map with a selected color map, calculated and display range
data from areas of interest using the selected approximation, and when necessary, recorded
the result in a video file. In order to achieve the required performance of the program, for its
operation in real time, the program is parallelized into threads, also CUDA cores of the com-
puter's video card were used. In the first (main) thread, the interface is displayed and interac-
tions with it are processed; in the second thread, frames are read from the video camera and a
depth map is built. The third and fourth threads do not always exist, the third thread is creat-
ed when creating regions of interest and is used to calculate the distance to the object and
metrics (RMS and SNR), and the fourth thread is created to record the video stream. It is also
worth noting that frames and video files are recorded without compression in order to ex-
clude the loss of their information content.

As mentioned above, in the second thread, the depth map is built using calculations on the
video card. Using the Numba library, a core function was written to perform parallel compu-
ting on a video card, with the help of which the required speed of building and coloring a
depth map is achieved. Even and odd frames are moved to the video card memory, then par-
allel pixel-by-pixel division (into 32 threads) takes place, after this filtering of unreliable val-
ues (unreliability is caused by noise and/or low brightness) and colorization of the resulting
depth map occurs.

The general algorithm for the functioning of the AP TMS depth map generator is shown in
Figure 9.

Figure 9. Block diagram of software operation

3.2. Performance evaluation
The data were obtained on a laptop, the parameters of which are given in Table 2.

Table 2. The main characteristics of the laptop
Parameter Value
Processor model Intel Core i7-12650H
Number of processor cores 10 (6 productive, 4 energy efficient)
Maximum processor frequency 4.7 ГГц
Discrete graphics card model GeForce RTX 3060
CUDA kernel number 3840
The maximum clock frequency of the video card 1475 MHz
RAM 16 GB

The CPU is designed to execute multiple threads at the same time, or split one thread of in-
structions into several and, after executing them separately, combine them back into one
thread in the correct order. There are few execution units in the processor, and the entire em-
phasis is on execution speed and reduction of idle time, which is achieved using cache
memory and a pipeline [24].

The main function of the GPU is to work on a huge number of tasks that are independent
of each other, which is why the GPU contains a huge number of execution units [25].

CUDA is a parallel computing platform and programming model developed by NVIDIA for
general purpose GPU computing. With the help of CUDA, developers can significantly speed
up computing applications using the performance of modern GPUs [26]. The CUDA core is
different from the usual processor architecture. They strive to work effectively in parallel.
CUDA cores are simpler in design, but there are a lot of them in a video card. If a central pro-
cessor can have 2-16 cores, then there are thousands of them in a video card [27].

The original frames were read in the original resolution of 1544x2064 pixels and in the re-
duced resolution of 772x1032 pixels. The distance was calculated using a polynomial function
of the 7th degree. Figure 10 shows a performance comparison graph for reading frames at na-

tive resolution. The processing time was counted from the moment two frames were received
in the original resolution until the moment the depth map was displayed on the screen.

Figure 10. Graph comparing performance when reading frames in the original format

From the graph shown in Figure 10, it follows that image processing using CUDA cores is

on average 3.5 times faster than processing on the processor. It can also be concluded that
when using the central processor, it will not be possible to achieve real-time operation. Figure
11 shows a graph comparing performance when reading frames at reduced resolution.

Figure 11. Graph comparing performance when reading frames at reduced resolution

From the graph shown in Figure 11, we can conclude that the CPU can work with small im-

ages (772x1032 pixels) in real time.
When conducting an experimental study of software performance, averaged values were

found: to form one frame of a depth map with source frames in the uint8 format, 19 ms is
spent, with source frames in the uint16 format - 31 ms. An image produced in uint8 format
has 256 levels per pixel, while a 12-bit image (which the AP TMS television camera is capable
of) can only be recorded in uint16 and has 4096 levels per pixel. 12-bit image is more accu-
rate, but depth map building is slower.

Related works
Research for similar software was conducted. No complete analogues of the developed

software have been found, which confirms the relevance of this development. It is also worth
noting that there are many software solutions with similar functions - building spatial depth

maps in real time, but at the expense of other principles for obtaining information about the
distance to objects.

One such solution is the ZED SDK for the ZED line of stereo cameras from Stereolabs [28].
ZED SDK is optimized for real-time operation as it uses CUDA for computing. This software
for a stereo camera has performance from 15 FPS with a stereo pair resolution of 4416×1242
pixels to 100 FPS with a stereo pair resolution of 1344×376 pixels [29]. With ZED it is possi-
ble to measure distances in the range from 0.3 to 20 meters. A distinctive feature of this soft-
ware is the ability to use a neural network to improve the accuracy of construction and visual
quality of depth maps.

Another example is the RealSense SDK from Intel [30]. RealSense SDK is developed for
the Intel RealSense line of stereo cameras and is used to build spatial depth maps in real
time. RealSense has a performance of 30 FPS at a stereo resolution of 3840x1080 and can
measure distances in the range from 0.2 to 10 meters. The distinguishing feature of this soft-
ware is the many ready-made and built-in software solutions, for example, building three-
dimensional models, facial recognition or eye tracking.

Arena SDK [31] from LUCID Vision Labs is a software solution that supports all LUCID
cameras. A special feature of the Arena SDK is its support for JupyterLab, which provides a
built-in and pre-configured interactive development environment that can be used to test
SDK features and camera performance. Software performance is determined by camera per-
formance. For example, when using the Time of Flight camera Helios2+ [32], the frame reso-
lution of which is 640 × 480 pixels and the measured range of which is from 0.3 to 8.3 me-
ters, in High-Speed mode, the Arena SDK performance is 103 FPS.

Conclusions
As a result, software with a graphical interface was developed to build a colored depth map

in real time based on frames obtained from the AP TMS television camera.
The performance of the AP TMS frame processing algorithm using the central processor

and the video card was compared. If we talk about working in real time, then building a depth
map with a maximum resolution is possible only using GPU CUDA cores. The processor can
only work in real time with reduced video frame resolution. In addition, from the perfor-
mance graphs, you can see how the frame processing time on the central processor changes
dramatically. This is because the laptop system uses the CPU for its tasks. It was found that
using the Numba library, which transfers calculations to the video card, it is possible to speed
up the software by an average of 3.5 times. As a result of the work, it can be concluded that it
was possible to achieve sufficient functionality and speed of the algorithm for building depth
maps in real-time at the maximum resolution of video frames and calculating the distance us-
ing a polynomial of the 7th degree.

It should be noted that the developed software has a wide functionality. So, you can adjust
the resolution and bit depth of the input video stream, adjust the degree of the polynomial
and its coefficients, filter the depth map, adjust the filtering by distance, record the input vid-
eo stream and the depth map, measure RMS and SNR, and much more.

Acknowledgements
The research was carried out at the expense of the grant of the Russian Science Foundation

No. 21-79-10200 in TUSUR.

References
1. V.G. Volkov, “Active-pulse surveylance devices,” in Defense Technology Issues, 1994,

no. 3(142), pp. 18–25.
2. V.E. Karasik, V.M. Orlov, “Laser vision systems: a tutorial”. Moscow, RF: MSTU im.

N.E. Bauman, 2001, 352 p.

3. Sun, H. Y., Guo, H. C., & Li, Y. C. (2009, August). Per-formance analysis of range-
gated active imaging system. In International Symposium on Photoelectronic Detection and
Imaging 2009: Laser Sensing and Imaging (Vol. 7382, p. 73822E). International Society for
Optics and Photonics. DOI: 10.1117/12.835576

4. Hartley R., Zisserman A. Multiple view geometry in computer vision. – Cambridge
university press, 2003.

5. Kapustin V.V., Movchan A.K., Kuryachiy M.I. Vision area parameters analysis for ac-
tive-pulse television-computing systems // Int. Siberian Conf. Control and Communications
(SIBCON), 2017. - P. 1–4. doi:10.1109/sibcon.2017.7998432

6. E. S. Chaldina, A. K. Movchan, V. V. Kapustin and M. I. Kuryachiy, "Multi-Area Range
Measurement Method Using Active-Pulse Television Measuring Systems," 2020 21st Interna-
tional Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices
(EDM), Chemal , Russia, 2020, pp. 293-297, doi: 10.1109/EDM49804.2020.9153500.

7. A. A. Tislenko, A. K. Movchan and V. V. Kapustin, "Improving the Distance Measure-
ment Accuracy of Active-Pulse Television Measuring Systems Using Polynomial Approxima-
tion," 2022 International Siberian Conference on Control and Communications (SIBCON),
Tomsk, Russian Federation, 2022, pp. 1-6, doi: 10.1109/SIBCON56144.2022.10002953.

8. Nagpal A., Gabrani G. Python for data analytics, scientific and technical applications //
2019 Amity international conference on artificial intelligence (AICAI). – IEEE, 2019. – P.
140-145.

9. PyCharm: The Python IDE for Professional Developers by JetBrains. Accessed: No-
vember, 29st, 2023. [Online]. Available: https://www.jetbrains.com/pycharm/.

10. Qt 6 – The latest version of Qt. Accessed: November, 29st, 2023. [Online]. Available:
https://www.qt.io/product/qt6.

11. SciPy. Accessed: November, 29st, 2023. [Online]. Available: https://scipy.org/.
12. SymPy. Accessed: November, 29st, 2023. [Online]. Available:

https://www.sympy.org/en/index.html.
13. XiAPI – ximea support. Accessed: November, 29st, 2023. [Online]. Available:

https://www.ximea.com/support/wiki/apis/xiAPI.
14. Numba: A High-Performance Python Compiler. Accessed: November, 29st, 2023.

[Online]. Available: https://numba.pydata.org/.
15. NumPy. Accessed: November, 29st, 2023. [Online]. Available: https://numpy.org/.
16. OpenCV. Accessed: November, 29st, 2023. [Online]. Available: https://opencv.org/.
17. glob - Unix style pathname pattern expansion. Accessed: November, 29st, 2023.

[Online]. Available: https://docs.python.org/3/library/glob.html.
18. time - Unix style pathname pattern expansion. Accessed: November, 29st, 2023.

[Online]. Available: https://docs.python.org/3/library/time.html.
19. sys – System-specific parameters and functions. Accessed: November, 29st, 2023.

[Online]. Available: https://docs.python.org/3/library/sys.html.
20. os - Miscellaneous operating system interfaces. Accessed: November, 29st, 2023.

[Online]. Available: https://docs.python.org/3/library/os.html.
21. math - Mathematical functions. Accessed: November, 29st, 2023. [Online]. Available:

https://docs.python.org/3/library/math.html.
22. GitHub - giampaolo/psutil: Cross-platform lib for process and system monitoring in

Python. Accessed: November, 29st, 2023. [Online]. Available:
https://github.com/giampaolo/psutil.

23. PyQtGraph - Scientific Graphics and GUI Library for Python. Accessed: November,
29st, 2023. [Online]. Available: https://www.pyqtgraph.org/.

24. Kuck, David L., “The Structure of Computers and Computations.” (1978).
25. N. Stojanovic and D. Stojanovic, “Parallelizing Multiple Flow Accumulation Algorithm

using CUDA and OpenACC,” ISPRS International Journal of Geo-Information, vol. 8, no. 9,
p. 386, Sep. 2019, doi: 10.3390/ijgi8090386.

26. Nvidia, "CUDA Zone". Accessed: February, 10st, 2023. [Online]. Available:
https://developer.nvidia.com/cuda-zone.

27. J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil, “Parallelization of
a Video Segmentation Algorithm on CUDA–Enabled Graphics Processing Units,” Lecture
Notes in Computer Science, pp. 924–935, 2009, doi: https://doi.org/10.1007/978-3-642-
03869-3_85.

28. Stereolabs Docs. Accessed: November, 29st, 2023. [Online]. Available:
https://www.stereolabs.com/docs/.

29. ZED 2 Camera and SDK Overview. Accessed: November, 29st, 2023. [Online]. Availa-
ble: https://cdn.stereolabs.com/assets/datasheets/zed2-camera-datasheet.pdf.

30. Intel RealSense Documentation. Accessed: November, 29st, 2023. [Online]. Available:
https://dev.intelrealsense.com/docs/.

31. Arena SDK. Accessed: November, 29st, 2023. [Online]. Available:
https://thinklucid.com/arena-software-development-kit/.

32. Helios2+ Time of Flight (ToF) IP67 3D Camera. Accessed: November, 29st, 2023.
[Online]. Available: https://thinklucid.com/product/helios2plus-time-of-flight-tof-ip67-3d-
camera/.

